Domain Adaptation and Transfer Learning in StochasticNets
نویسندگان
چکیده
منابع مشابه
Domain Adaptation and Transfer Learning in StochasticNets
Transfer learning is a recent field of machine learning research that aims to resolve the challenge of dealing with insufficient training data in the domain of interest. This is a particular issue with traditional deep neural networks where a large amount of training data is needed. Recently, StochasticNets was proposed to take advantage of sparse connectivity in order to decrease the number of...
متن کاملDomain Adaptation Meets Disentangled Representation Learning and Style Transfer
In order to solve unsupervised domain adaptation problem, recent methods focus on the use of adversarial learning to learn the common representation among domains. Although many designs are proposed, they seem to ignore the negative influence of domain-specific characteristics in transferring process. Besides, they also tend to obliterate these characteristics when extracted, although they are ...
متن کاملLearning and Domain Adaptation
Domain adaptation is a fundamental learning problem where one wishes to use labeled data from one or several source domains to learn a hypothesis performing well on a different, yet related, domain for which no labeled data is available. This generalization across domains is a very significant challenge for many machine learning applications and arises in a variety of natural settings, includin...
متن کاملA Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique
In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...
متن کاملDistant Domain Transfer Learning
In this paper, we study a novel transfer learning problem termed Distant Domain Transfer Learning (DDTL). Different from existing transfer learning problems which assume that there is a close relation between the source domain and the target domain, in the DDTL problem, the target domain can be totally different from the source domain. For example, the source domain classifies face images but t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Vision Letters
سال: 2015
ISSN: 2369-6753
DOI: 10.15353/vsnl.v1i1.44